Copied to
clipboard

G = C4225D14order 448 = 26·7

25th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4225D14, C14.1422+ 1+4, C4⋊C417D14, C284D45C2, (C4×C28)⋊2C22, C4⋊D2838C2, C422C28D7, C422D71C2, D14⋊D446C2, C22⋊D2828C2, D14⋊C424C22, (C2×D28)⋊10C22, Dic7⋊C45C22, C22⋊C4.41D14, D14.5D444C2, (C2×C28).195C23, (C2×C14).255C24, C2.67(D48D14), C23.61(C22×D7), C74(C22.54C24), (C22×C14).69C23, (C23×D7).70C22, C22.276(C23×D7), (C2×Dic7).131C23, (C22×D7).114C23, (C2×C4×D7)⋊28C22, (C7×C4⋊C4)⋊34C22, (C7×C422C2)⋊10C2, (C2×C4).211(C22×D7), (C2×C7⋊D4).75C22, (C7×C22⋊C4).80C22, SmallGroup(448,1164)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4225D14
C1C7C14C2×C14C22×D7C23×D7C22⋊D28 — C4225D14
C7C2×C14 — C4225D14
C1C22C422C2

Generators and relations for C4225D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=a-1b2, dad=ab2, cbc-1=a2b, dbd=a2b-1, dcd=c-1 >

Subgroups: 1644 in 252 conjugacy classes, 91 normal (16 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C24, Dic7, C28, D14, C2×C14, C2×C14, C22≀C2, C4⋊D4, C22.D4, C422C2, C422C2, C41D4, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C22×D7, C22×D7, C22×D7, C22×C14, C22.54C24, Dic7⋊C4, D14⋊C4, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C2×C4×D7, C2×D28, C2×C7⋊D4, C23×D7, C284D4, C422D7, C22⋊D28, D14⋊D4, D14.5D4, C4⋊D28, C7×C422C2, C4225D14
Quotients: C1, C2, C22, C23, D7, C24, D14, 2+ 1+4, C22×D7, C22.54C24, C23×D7, D48D14, C4225D14

Smallest permutation representation of C4225D14
On 112 points
Generators in S112
(1 75 11 90)(2 83 12 98)(3 77 13 92)(4 71 14 86)(5 79 8 94)(6 73 9 88)(7 81 10 96)(15 74 28 89)(16 82 22 97)(17 76 23 91)(18 84 24 85)(19 78 25 93)(20 72 26 87)(21 80 27 95)(29 100 45 107)(30 68 46 61)(31 102 47 109)(32 70 48 63)(33 104 49 111)(34 58 50 65)(35 106 51 99)(36 60 52 67)(37 108 53 101)(38 62 54 69)(39 110 55 103)(40 64 56 57)(41 112 43 105)(42 66 44 59)
(1 102 22 62)(2 110 23 70)(3 104 24 64)(4 112 25 58)(5 106 26 66)(6 100 27 60)(7 108 28 68)(8 99 20 59)(9 107 21 67)(10 101 15 61)(11 109 16 69)(12 103 17 63)(13 111 18 57)(14 105 19 65)(29 80 36 88)(30 96 37 74)(31 82 38 90)(32 98 39 76)(33 84 40 92)(34 86 41 78)(35 72 42 94)(43 93 50 71)(44 79 51 87)(45 95 52 73)(46 81 53 89)(47 97 54 75)(48 83 55 91)(49 85 56 77)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 25)(2 24)(3 23)(4 22)(5 28)(6 27)(7 26)(8 15)(9 21)(10 20)(11 19)(12 18)(13 17)(14 16)(29 52)(30 51)(31 50)(32 49)(33 48)(34 47)(35 46)(36 45)(37 44)(38 43)(39 56)(40 55)(41 54)(42 53)(57 70)(58 69)(59 68)(60 67)(61 66)(62 65)(63 64)(71 75)(72 74)(76 84)(77 83)(78 82)(79 81)(85 91)(86 90)(87 89)(92 98)(93 97)(94 96)(99 108)(100 107)(101 106)(102 105)(103 104)(109 112)(110 111)

G:=sub<Sym(112)| (1,75,11,90)(2,83,12,98)(3,77,13,92)(4,71,14,86)(5,79,8,94)(6,73,9,88)(7,81,10,96)(15,74,28,89)(16,82,22,97)(17,76,23,91)(18,84,24,85)(19,78,25,93)(20,72,26,87)(21,80,27,95)(29,100,45,107)(30,68,46,61)(31,102,47,109)(32,70,48,63)(33,104,49,111)(34,58,50,65)(35,106,51,99)(36,60,52,67)(37,108,53,101)(38,62,54,69)(39,110,55,103)(40,64,56,57)(41,112,43,105)(42,66,44,59), (1,102,22,62)(2,110,23,70)(3,104,24,64)(4,112,25,58)(5,106,26,66)(6,100,27,60)(7,108,28,68)(8,99,20,59)(9,107,21,67)(10,101,15,61)(11,109,16,69)(12,103,17,63)(13,111,18,57)(14,105,19,65)(29,80,36,88)(30,96,37,74)(31,82,38,90)(32,98,39,76)(33,84,40,92)(34,86,41,78)(35,72,42,94)(43,93,50,71)(44,79,51,87)(45,95,52,73)(46,81,53,89)(47,97,54,75)(48,83,55,91)(49,85,56,77), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,25)(2,24)(3,23)(4,22)(5,28)(6,27)(7,26)(8,15)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,56)(40,55)(41,54)(42,53)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64)(71,75)(72,74)(76,84)(77,83)(78,82)(79,81)(85,91)(86,90)(87,89)(92,98)(93,97)(94,96)(99,108)(100,107)(101,106)(102,105)(103,104)(109,112)(110,111)>;

G:=Group( (1,75,11,90)(2,83,12,98)(3,77,13,92)(4,71,14,86)(5,79,8,94)(6,73,9,88)(7,81,10,96)(15,74,28,89)(16,82,22,97)(17,76,23,91)(18,84,24,85)(19,78,25,93)(20,72,26,87)(21,80,27,95)(29,100,45,107)(30,68,46,61)(31,102,47,109)(32,70,48,63)(33,104,49,111)(34,58,50,65)(35,106,51,99)(36,60,52,67)(37,108,53,101)(38,62,54,69)(39,110,55,103)(40,64,56,57)(41,112,43,105)(42,66,44,59), (1,102,22,62)(2,110,23,70)(3,104,24,64)(4,112,25,58)(5,106,26,66)(6,100,27,60)(7,108,28,68)(8,99,20,59)(9,107,21,67)(10,101,15,61)(11,109,16,69)(12,103,17,63)(13,111,18,57)(14,105,19,65)(29,80,36,88)(30,96,37,74)(31,82,38,90)(32,98,39,76)(33,84,40,92)(34,86,41,78)(35,72,42,94)(43,93,50,71)(44,79,51,87)(45,95,52,73)(46,81,53,89)(47,97,54,75)(48,83,55,91)(49,85,56,77), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,25)(2,24)(3,23)(4,22)(5,28)(6,27)(7,26)(8,15)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,56)(40,55)(41,54)(42,53)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64)(71,75)(72,74)(76,84)(77,83)(78,82)(79,81)(85,91)(86,90)(87,89)(92,98)(93,97)(94,96)(99,108)(100,107)(101,106)(102,105)(103,104)(109,112)(110,111) );

G=PermutationGroup([[(1,75,11,90),(2,83,12,98),(3,77,13,92),(4,71,14,86),(5,79,8,94),(6,73,9,88),(7,81,10,96),(15,74,28,89),(16,82,22,97),(17,76,23,91),(18,84,24,85),(19,78,25,93),(20,72,26,87),(21,80,27,95),(29,100,45,107),(30,68,46,61),(31,102,47,109),(32,70,48,63),(33,104,49,111),(34,58,50,65),(35,106,51,99),(36,60,52,67),(37,108,53,101),(38,62,54,69),(39,110,55,103),(40,64,56,57),(41,112,43,105),(42,66,44,59)], [(1,102,22,62),(2,110,23,70),(3,104,24,64),(4,112,25,58),(5,106,26,66),(6,100,27,60),(7,108,28,68),(8,99,20,59),(9,107,21,67),(10,101,15,61),(11,109,16,69),(12,103,17,63),(13,111,18,57),(14,105,19,65),(29,80,36,88),(30,96,37,74),(31,82,38,90),(32,98,39,76),(33,84,40,92),(34,86,41,78),(35,72,42,94),(43,93,50,71),(44,79,51,87),(45,95,52,73),(46,81,53,89),(47,97,54,75),(48,83,55,91),(49,85,56,77)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,25),(2,24),(3,23),(4,22),(5,28),(6,27),(7,26),(8,15),(9,21),(10,20),(11,19),(12,18),(13,17),(14,16),(29,52),(30,51),(31,50),(32,49),(33,48),(34,47),(35,46),(36,45),(37,44),(38,43),(39,56),(40,55),(41,54),(42,53),(57,70),(58,69),(59,68),(60,67),(61,66),(62,65),(63,64),(71,75),(72,74),(76,84),(77,83),(78,82),(79,81),(85,91),(86,90),(87,89),(92,98),(93,97),(94,96),(99,108),(100,107),(101,106),(102,105),(103,104),(109,112),(110,111)]])

61 conjugacy classes

class 1 2A2B2C2D2E···2I4A···4F4G4H4I7A7B7C14A···14I14J14K14L28A···28R28S···28AA
order122222···24···444477714···1414141428···2828···28
size1111428···284···42828282222···28884···48···8

61 irreducible representations

dim11111111222244
type++++++++++++++
imageC1C2C2C2C2C2C2C2D7D14D14D142+ 1+4D48D14
kernelC4225D14C284D4C422D7C22⋊D28D14⋊D4D14.5D4C4⋊D28C7×C422C2C422C2C42C22⋊C4C4⋊C4C14C2
# reps111333313399318

Matrix representation of C4225D14 in GL8(𝔽29)

82413100000
13213160000
002150000
001680000
00002751616
0000282319
0000418824
00007111321
,
102700000
010270000
002800000
000280000
000022400
000012700
000000824
0000001321
,
725000000
220000000
7252240000
220700000
000082500
0000242800
00002410224
0000211570
,
10000000
928000000
102800000
9282010000
0000261100
000023300
00000010
000000928

G:=sub<GL(8,GF(29))| [8,13,0,0,0,0,0,0,24,21,0,0,0,0,0,0,13,3,21,16,0,0,0,0,10,16,5,8,0,0,0,0,0,0,0,0,27,28,4,7,0,0,0,0,5,2,18,11,0,0,0,0,16,3,8,13,0,0,0,0,16,19,24,21],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,27,0,28,0,0,0,0,0,0,27,0,28,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,24,27,0,0,0,0,0,0,0,0,8,13,0,0,0,0,0,0,24,21],[7,22,7,22,0,0,0,0,25,0,25,0,0,0,0,0,0,0,22,7,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,8,24,24,21,0,0,0,0,25,28,10,15,0,0,0,0,0,0,22,7,0,0,0,0,0,0,4,0],[1,9,1,9,0,0,0,0,0,28,0,28,0,0,0,0,0,0,28,20,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,26,23,0,0,0,0,0,0,11,3,0,0,0,0,0,0,0,0,1,9,0,0,0,0,0,0,0,28] >;

C4225D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{25}D_{14}
% in TeX

G:=Group("C4^2:25D14");
// GroupNames label

G:=SmallGroup(448,1164);
// by ID

G=gap.SmallGroup(448,1164);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,219,184,1571,570,192,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d=a*b^2,c*b*c^-1=a^2*b,d*b*d=a^2*b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽